By Topic

Minimization of delay sensitivity to process induced voltage threshold variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nabaa, G. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont., Canada ; Najm, F.N.

Threshold voltage variations, resulting from underlying process variations, cause variations in circuit delay that can affect the chip timing yield. We study design techniques and optimization strategies that minimize the effects of threshold voltage variations on circuit delay variability. Specifically, we compare different static circuits (classic CMOS, ratioed logic, and transmission gate logic) and dynamic circuits and evaluate their limitations and benefits in terms of delay variability, performance penalty and area overhead. Based on our findings, we also introduce circuit design guidelines and techniques that help mitigate the effects of threshold voltage variations. By reducing delay variability on a per-gate basis, we show how one can build threshold voltage variations-aware gate libraries for use in deep submicron design.

Published in:

IEEE-NEWCAS Conference, 2005. The 3rd International

Date of Conference:

19-22 June 2005