Cart (Loading....) | Create Account
Close category search window

A micromachined gyroscope with piezoresistance for both high performance Coriolis-effect detection and torsional vibration monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Xuemeng Chen ; State Key Lab of Transducer Technol., Chinese Acad. of Sci., Shanghai, China ; Xinxin Li ; Zhaohui Song ; Shusen Huang
more authors

A micromachined vibrating gyroscope with a novel piezoresistive scheme is designed, fabricated and tested. A piezoresistive sensing method for Coriolis-acceleration detection is used with both high sensitivity and high resonant frequency. A four-terminal piezoresistive element is used to monitor and stabilize the vibration amplitude of the driving mode through a feedback loop. With the same loop, temperature drift of the gyro's piezoresistive output can be on-chip compensated effectively. The gyro performance is measured, with the following results: resonance frequency in detection mode is 989 Hz; angular rate measurement range is ± 300°/s; noise-limited angular rate resolution is 0.33°/s.

Published in:

Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on  (Volume:1 )

Date of Conference:

5-9 June 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.