By Topic

Image interpretation using multiple sensing modalities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen-Chau Chu ; Dept. of Electr. & Comput. Eng., Texas Univ., Austin, TX, USA ; Aggarwal, J.K.

The AIMS (automatic interpretation using multiple sensors) system, which uses registered laser radar and thermal imagers, is discussed. Its objective is to detect and recognize man-made objects at kilometer range in outdoor scenes. The multisensor fusion approach is applied to four sensing modalities (range, intensity, velocity, and thermal) to improve both image segmentation and interpretation. Low-level attributes of image segments (regions) are computed by the segmentation modules and then converted to the KEE format. The knowledge-based interpretation modules are constructed using KEE and Lisp. AIMS applies forward chaining in a bottom-up fashion to derive object-level interpretations from databases generated by the low-level processing modules. The efficiency of the interpretaton process is enhanced by transferring nonsymbolic processing tasks to a concurrent service manager (program). A parallel implementation of the interpretation module is reported. Experimental results using real data are presented

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 8 )