By Topic

A theory of multiscale, curvature-based shape representation for planar curves

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Mokhtarian ; NTT Basic Res. Lab., Tokyo, Japan ; A. K. Mackworth

A shape representation technique suitable for tasks that call for recognition of a noisy curve of arbitrary shape at an arbitrary scale or orientation is presented. The method rests on the describing a curve at varying levels of detail using features that are invariant with respect to transformations that do not change the shape of the curve. Three different ways of computing the representation are described. They result in three different representations: the curvature scale space image, the renormalized curvature scale space image, and the resampled curvature scale space image. The process of describing a curve at increasing levels of abstraction is referred to as the evolution or arc length evolution of that curve. Several evolution and arc length evolution properties of planar curves are discussed

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:14 ,  Issue: 8 )