By Topic

Noise in SiGe HBT RF Technology: Physics, Modeling, and Circuit Implications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Guofu Niu ; Electr. & Comput. Eng. Dept., Auburn Univ., AL, USA

This paper presents an overview of the physics, modeling, and circuit implications of RF broad-band noise, low-frequency noise, and oscillator phase noise in SiGe heterojunction bipolar transistor (HBT) RF technology. The ability to simultaneously achieve high cutoff frequency (fT), low base resistance (rb), and high current gain (β) using Si processing underlies the low levels of low-frequency 1/f noise, RF noise, and phase noise of SiGe HBTs. We first examine the RF noise sources in SiGe HBTs and the RF noise parameters as a function of SiGe profile design, transistor biasing, sizing, and operating frequency, and then show a low-noise amplifier design example to bridge the gap between device and circuit level understandings. We then examine the low-frequency noise in SiGe HBTs and develop a methodology to determine the highest tolerable low-frequency 1/f noise for a given RF application. The upconversion of 1/f noise, base resistance thermal noise, and shot noises to phase noise is examined using circuit simulations, which show that the phase noise corner frequency in SiGe HBT oscillators is typically much smaller than the 1/f corner frequency measured under dc biasing. The implications of SiGe profile design, transistor sizing, biasing, and technology scaling are examined for all three types of noises.

Published in:

Proceedings of the IEEE  (Volume:93 ,  Issue: 9 )