Cart (Loading....) | Create Account
Close category search window
 

Scaling of SiGe Heterojunction Bipolar Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jae-Sung Rieh ; Dept. of Electron. Eng., Korea Univ., Seoul, South Korea ; Greenberg, D. ; Stricker, A. ; Freeman, G.

Scaling has been the principal driving force behind the successful technology innovations of the past half-century. This paper investigates the impacts of scaling on SiGe heterojunction bipolar transistors (HBTs), which have recently emerged as a strong contender for RF and mixed-signal applications. The impacts of scaling on key performance metrics such as speed and noise are explored, and both theory and data show that scaling, both vertical and lateral, has mostly beneficial effects on these metrics. However, it is shown that the scaled devices are increasingly vulnerable to device reliability issues due to increased electric field and operation current density. Bipolar transistor scaling rules are reviewed and compared with accumulated reported data for verification. A review of scaling limits suggests that bipolar scaling has not reached the physical fundamental limit yet, promising a continued improvement of bipolar performance in the foreseeable future.

Published in:

Proceedings of the IEEE  (Volume:93 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.