By Topic

Differential MMSE: A Framework for Robust Adaptive Interference Suppression for DS-CDMA Over Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Madhow, U. ; Dept. of Electr. & Comput. Eng., Univ. of California, Santa Barbara, CA, USA ; Bruvold, K. ; Liping Zhu

The linear minimum mean-squared error (MMSE) criterion is known to provide adaptive algorithms for interference suppression in direct-sequence (DS) code-division multiple-access (CDMA) systems. However, standard MMSE adaptation is not robust to fast fading, being unable to compensate for rapid channel variations. In this paper, we provide a framework for deriving robust adaptive algorithms in this setting based on a new differential MMSE (DMMSE) criterion, which is a constrained optimization problem in which the quantity to be tracked is the ratio of the data appearing in two successive observation intervals. When applied to a DS-CDMA system with short spreading waveforms (i.e., with period equal to the symbol interval) operating over a flat-fading channel, the DMMSE criterion avoids tracking the fades, exploiting the negligible variation of the fading gain over two consecutive symbols. For frequency-selective fading, the DMMSE criterion is extended to provide a new eigenrake receiver which provides interference suppression and diversity combining without requiring explicit information regarding the desired user's propagation channel.

Published in:

Communications, IEEE Transactions on  (Volume:53 ,  Issue: 8 )