By Topic

Recognition of Arabic characters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Al-Yousefi ; Dept. of Electr. & Comput. Eng., Iowa State Univ., Ames, IA ; S. S. Udpa

A statistical approach for the recognition of Arabic characters is introduced. As a first step, the character is segmented into primary and secondary parts (dots and zigzags). The secondary parts of the character are then isolated and identified separately, thereby reducing the number of classes from 28 to 18. The moments of the horizontal and vertical projections of the remaining primary characters are then calculated and normalized with respect to the zero-order moment. Simple measures of the shape are obtained from the normalized moments. A 9-D feature vector is obtained for each character. Classification is accomplished using quadratic discriminant functions. The approach was evaluated using isolated, handwritten, and printed characters from a database established for this purpose. The results indicate that the technique offers better classification rates in comparison with existing methods

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:14 ,  Issue: 8 )