By Topic

Silicon-Tungsten Calorimeter for the Forward Direction in the PHENIX Experiment at RHIC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
V. Bonvicini ; Sezione di Trieste, INFN, Trieste, Italy ; V. Dzhordzhadze ; E. Kistenev ; J. Lajoie
more authors

The PHENIX detector at RHIC has been designed to study hadronic and leptonic signatures of the Quark Gluon Plasma in heavy ion collisions and spin dependent structure functions in polarized proton collisions. The baseline detector measures muons in two muon spectrometers located forward and backward of mid-rapidity, and measures hadrons, electrons, and photons in two central spectrometer arms, each of which covers 90 ^\circ in azimuth and 0.35 units of rapidity. Further progress requires extending rapidity coverage for hadronic and electromagnetic signatures by upgrading the functionality of the PHENIX muon spectrometers to include photon and jet measurement capabilities. Tungsten calorimeters with silicon pixel readout and fine transverse and longitudinal segmentation are proposed to attain this goal. The use of such a design provides the highest density and finest granularity possible in a calorimeter.

Published in:

IEEE Transactions on Nuclear Science  (Volume:52 ,  Issue: 4 )