By Topic

Statistical Performance of the Memoryless Nonlinear Gradient Algorithm for the Constrained Adaptive IIR Notch Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yegui Xiao ; Dept. of Manage. & Inf. Syst., Prefectural Univ. of Hiroshima, Japan ; Liying Ma ; Khorasani, K. ; Ikuta, A.

Gradient-type algorithms for the adaptive infinite-impulse response (IIR) notch filters are very attractive in terms of both performance and computational requirements for various real-life applications. This paper presents, in detail, a statistical analysis of the memoryless nonlinear gradient (MNG) algorithm applied to the well-known second-order adaptive IIR notch filter with constrained poles and zeros. This analysis is based on a proper use of Taylor series expansion and nonlinearization of output signals of the notch and gradient filters. Two difference equations are derived first for the convergence in the mean and mean square senses, respectively. Two closed-form expressions, one for the steady-state estimation bias and the other for the mean-square error, are then derived based on the difference equations, with the former valid for both fast and slow adaptations and the latter valid for slow adaptation only. A closed-form coarse stability bound for the step size parameter of the algorithm is also derived. Extensive simulations are performed to reveal the validity and limitations of the analytical findings. Comparisons between the MNG and the conventional plain gradient algorithm are also made.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 8 )