By Topic

Quantum Computer Simulator Based on the Circuit Model of Quantum Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Karafyllidis, I.G. ; Dept. of Electr. & Comput. Eng., Democritus Univ. of Thrace, Xanthi, Greece

A quantum computer simulator is presented. This simulator is an engineering work and no deep understanding of quantum mechanics is required from the user. The simulator is based on the circuit model of quantum computation in which quantum gates act on quantum registers which comprise a number of quantum bits (qubits). The inputs to the simulator are the initial states of the qubits that form a quantum register and the quantum gates applied at each computation step. The inputs are entered through a graphical user interface. The outputs of the simulator are the matrices that represent the quantum register state at each quantum computation step and graphical outputs that show the probability of measuring each one of the possible quantum register base states and the phase of each state at each computation step. The well-known Deutsch's algorithm and the quantum Fourier transform, which is the base of many quantum algorithms, are presented using this simulator. Furthermore, the generation and variation of entanglement during quantum computations can be calculated using this simulator. The quantum computer simulator is a useful tool for the study of quantum computer circuits, quantum computing, and the development of new quantum algorithms.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 8 )