By Topic

Behavioral Model of a Self-Mixing Laser Diode Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Plantier, Guy ; Ecole Superieure d''Electronique de l''Ouest, Angers, France ; Bes, C. ; Bosch, T.

The spectral properties of a laser diode are modified when the optical beam is back-scattered into the active cavity of the laser. Based on the use of this optical feedback, the self-mixing effect has been demonstrated to be suitable for sensing applications. This is an emerging technique enabling notably displacement, distance and/or velocity measurements to be performed. However, the self-mixing signal shape is strongly modified by the strength of the back-scattering and by nonlinear phenomena governing the global behavior of the laser diode. This makes signal processing rather challenging. In this paper, a new high-level model is proposed to represent the self-mixing phenomenon and to simplify the solution of nonlinear equations involved in this problem. This model is represented by schematic block diagrams commonly used for the description of complex systems in the domains of nonlinear mechanics, telecommunications, sensors, actuators, etc. This approach will allow the use of powerful and standard simulation tools such as Spice, VHDL-AMS or MATLAB/Simulink to develop new methods for signal processing of optical feedback interferometers, notably in the case of displacements measurements.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:41 ,  Issue: 9 )