Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Characteristics of Electrically Driven Two-Dimensional Photonic Crystal Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Park, Hong-Gyu ; Dept. of Chem. & Chem. Biol., Harvard Univ., Cambridge, MA, USA ; Kim, Se-Heon ; Min-Kyo Seo ; Young-Gu Ju
more authors

We demonstrate room-temperature low-threshold-current lasing action from electrically driven wavelength-scale high-quality photonic crystal lasers having large spontaneous emission factors by solving the theoretical and technical constraints laid upon by the additional requirement of the current injection. The ultrasmall cavity is electrically pulse pumped through a submicron-size semiconductor “wire” at the center of the mode with minimal degradation of the quality factor. In addition, to better utilize the low mobility of the hole, we employ a doping structure that is inverted from the conventional semiconductors. Rich lasing actions and their various characteristics are experimentally measured in the single-cell and three-cell photonic crystal cavities. Several relevant measurements are compared with three-dimensional finite-difference time-domain computations based on the actual fabricated structural parameters. The electrically driven photonic crystal laser, which is a small step toward a “practical” form of the single photon source, represents a meaningful achievement in the field of photonic crystal devices and photonic integrated circuits as well as of great interest to the quantum electrodynamics and quantum information communities.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:41 ,  Issue: 9 )