By Topic

High-Frequency Multimegawatt Polyphase Resonant Power Conditioning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

High-frequency multimegawatt polyphase resonant power conditioning techniques have recently been realized as a result of key component developments, cooperative efforts, research and development funding contracts, and newly applied engineering techniques. The first generation 10-MW pulsed converter-modulators, implemented at Los Alamos National Laboratory, Los Alamos, NM, are now utilized for the Oak Ridge National Laboratory, Oak Ridge, TN, Spallation Neutron Source (SNS) accelerator klystron radio frequency amplifier power systems [1]. Three different styles of polyphase resonant converter-modulators were developed for the SNS application. The various systems operate up to 140-kV, or 11-MW pulses, or up to 1.1 MW average power, all from a direct current input of$+/-$1.2 kV. The component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in overall power conditioning topology. As an example, the 20-kHz high-voltage transformers are less than 1% the size and weight of equivalent 60-Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance which results in limited power transfer. This provides for power conditioning systems that are inherently self-protective, with automatic fault “ride-through” capabilities. By altering and iterating the Los Alamos design, higher power and continuous wave power conditioning systems can now be realized with improved performance and flexibility. This paper will examine the SNS engineering data, briefly review the underlying theory of polyphase resonant conversion techniques, and apply this knowledge to future system topologies.

Published in:

Plasma Science, IEEE Transactions on  (Volume:33 ,  Issue: 4 )