By Topic

Subspace-based prototyping and classification of chromosome images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Qiang Wu ; Adv. Digital Imaging Res., League City, TX, USA ; Liu, Zhongmin ; Chen, T. ; Zixiang Xiong
more authors

Chromosomes are essential genomic information carriers. Chromosome classification constitutes an important part of routine clinical and cancer cytogenetics analysis. Cytogeneticists perform visual interpretation of banded chromosome images according to the diagrammatic models of various chromosome types known as the ideograms, which mimic artists' depiction of the chromosomes. In this paper, we present a subspace-based approach for automated prototyping and classification of chromosome images. We show that 1) prototype chromosome images can be quantitatively synthesized from a subspace to objectively represent the chromosome images of a given type or population, and 2) the transformation coefficients (or projected coordinate values of sample chromosomes) in the subspace can be utilized as the extracted feature measurements for classification purposes. We examine in particular the formation of three well-known subspaces, namely the ones derived from principal component analysis (PCA), Fisher's linear discriminant analysis, and the discrete cosine transform (DCT). These subspaces are implemented and evaluated for prototyping two-dimensional (2-D) images and for classification of both 2-D images and one-dimensional profiles of chromosomes. Experimental results show that previously unseen prototype chromosome images of high visual quality can be synthesized using the proposed subspace-based method, and that PCA and the DCT significantly outperform the well-known benchmark technique of weighted density distribution functions in classifying 2-D chromosome images.

Published in:

Image Processing, IEEE Transactions on  (Volume:14 ,  Issue: 9 )