Cart (Loading....) | Create Account
Close category search window

On the Computational Efficiency of Different Waveguide Mesh Topologies for Room Acoustic Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Campos, G.R. ; Univ. of York, UK ; Howard, D.M.

Room acoustic simulation using digital waveguide modeling requires three-dimensional waveguide meshes in order to represent fully the acoustic properties of the space. This paper presents a systematic analysis of four mesh topologies suggested in the literature: rectilinear, tetrahedral, cubic close-packed and octahedral. These mesh structures are compared from the standpoint of computational efficiency, bearing in mind specific issues that are important for room acoustic simulation. Each mesh topology offers a different compromise between spatial resolution, bandwidth, dispersion characteristics (including suitability for the application of dispersion-compensation techniques), computation time, memory requirements and implementation complexity.

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:13 ,  Issue: 5 )

Date of Publication:

Sept. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.