By Topic

Audio Classification and Categorization Based on Wavelets and Support Vector Machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chien-Chang Lin ; Dept. of Inf. Eng., I-Shou Univ., Taiwan ; Shi-Huang Chen ; Trieu-Kien Truong ; Yukon Chang

In this paper, an improved audio classification and categorization technique is presented. This technique makes use of wavelets and support vector machines (SVMs) to accurately classify and categorize audio data. When a query audio is given, wavelets are first applied to extract acoustical features such as subband power and pitch information. Then, the proposed method uses a bottom-up SVM over these acoustical features and additional parameters, such as frequency cepstral coefficients, to accomplish audio classification and categorization. A public audio database (Muscle Fish), which consists of 410 sounds in 16 classes, is used to evaluate the performances of the proposed method against other similar schemes. Experimental results show that the classification errors are reduced from 16 (8.1%) to six (3.0%), and the categorization accuracy of a given audio sound can achieve 100% in the Top 2 matches.

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:13 ,  Issue: 5 )