By Topic

Semidefinite Relaxation for Detection of 16-QAM Signaling in MIMO Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wiesel, A. ; Dept. of Electr. Eng., Israel Inst. of Technol., Haifa, Israel ; Eldar, Y.C. ; Shamai, S.

We develop a computationally efficient approximation of the maximum likelihood (ML) detector for 16 quadrature amplitude modulation (16-QAM) in multiple-input multiple-output (MIMO) systems. The detector is based on a convex relaxation of the ML problem. The resulting optimization is a semidefinite program that can be solved in polynomial time with respect to the number of inputs in the system. Simulation results in a random MIMO system show that the proposed algorithm outperforms the conventional decorrelator detector by about 2.5 dB at high signal-to-noise ratios.

Published in:

Signal Processing Letters, IEEE  (Volume:12 ,  Issue: 9 )