By Topic

Subspace Partition Weighted Sum Filters for Image Restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Lin ; Dept. of Electr. & Comput. Eng., Univ. of Dayton, OH, USA ; R. C. Hardie ; K. E. Barner

The previously proposed partition-based weighted sum (PWS) filters combine vector quantization (VQ) and linear finite impulse response (FIR) Wiener filtering concepts. By partitioning the observation space and applying a tuned Wiener filter to each partition, the PWS is spatially adaptive and has been shown to perform well in noise reduction applications. In this letter, we propose the subspace PWS (SPWS) filter and evaluate the efficacy of the SPWS filter in image deconvolution and noise reduction applications. In the SPWS filter, we project the observation vectors into a subspace using principal component analysis (PCA), or other methods, prior to partitioning. This subspace projection can dramatically reduce the computational burden associated with partitioning, especially for large window sizes. In some cases, performance is also enhanced due to improved partitioning.

Published in:

IEEE Signal Processing Letters  (Volume:12 ,  Issue: 9 )