By Topic

Identification and fault diagnosis of a simulated model of an industrial gas turbine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Simani, S. ; Dept. of Eng., Univ. of Ferrara, Italy

In this study, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults of a gas turbine system is presented. The diagnosis scheme is based on the generation of so-called "residuals" that are errors between estimated and measured variables of the process. The work is completed under both noise-free and noisy conditions. Residual analysis and statistical tests are used for fault detection and isolation, respectively. The final section shows how the actual size of each fault can be estimated using a multilayer perceptron neural network used as a nonlinear function approximator. The proposed fault detection and isolation tool has been tested on a single-shaft industrial gas turbine model.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:1 ,  Issue: 3 )