Cart (Loading....) | Create Account
Close category search window
 

Increasing the throughput of spread-Aloha protocols via long PN spreading codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ribeiro, A. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA ; Yu, Y. ; Giannakis, G.B. ; Sidiropoulos, N.D.

Random access Aloha protocols have well documented merits in terms of simplicity and favorable delay-throughput trade-off under moderate bursty traffic loads. Short spreading codes have been used in conjunction with random access to endow Aloha with benefits originating from spread-spectrum communications. Instead of short, symbol-periodic spreading, this paper considers long pseudo-random (PN) packet-periodic sequences in the context of spread-Aloha and establishes that long PN codes increase the maximum stable throughput by reducing the probability of collisions. Relying on a dominant system approach, we analyze the resultant throughput and demonstrate that increasing the PN code length quickly transforms the collision-limited channel to an interference-limited one. In particular, we investigate how throughput depends on user load and packet length. Finally, we discuss synchronization issues and provide corroborating numerical results.

Published in:

Communications, 2005. ICC 2005. 2005 IEEE International Conference on  (Volume:5 )

Date of Conference:

16-20 May 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.