By Topic

APP demodulator for turbo coded differential unitary space-time modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vanichchanunt, Pisit ; Dept. of Electr. Eng., Chulalongkorn Univ., Bangkok, Thailand ; Sangwongngam, P. ; Nakpeerayuth, S. ; Wuttisittikulkij, Lunchakorn

In this paper, an iterative multiple symbol differential detection (MSDD) for turbo coded differential unitary space-time modulation (DUSTM) is developed by using an a posteriori probability (APP) demodulator under correlated slow and fast Rayleigh flat fading channels. The metric function necessary for the detection operates based on linear prediction. Two approaches are presented to utilize the metric. In the first approach, the BCJR algorithm is modified to deal with the increased-state trellis of the differential modulation. In the second approach, the VA is modified to find the symbol sequences associated with the survivors for the BCJR algorithm.

Published in:

Communications, 2005. ICC 2005. 2005 IEEE International Conference on  (Volume:5 )

Date of Conference:

16-20 May 2005