Cart (Loading....) | Create Account
Close category search window
 

A Theoretical Evaluation of Parallel Interference Cancellation in M-Ary Orthogonal Modulated Asynchronous DS-CDMA System Over Multipath Rayleigh Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pei Xiao ; Sch. of Electr., Electron. & Comput. Eng., Univ. of Newcastle Upon Tyne, UK ; Strom, E.G.

In this paper, we tackle the problem of theoretical evaluation for the multistage parallel interference cancellation (PIC) scheme in a direct-sequence code division multiple access (DS-CDMA) system with orthogonal modulation and long scrambling codes. The studied system operates on the reverse link in a time varying multipath Rayleigh fading channel. By applying the Central Limit Theorem and some other approximations to multiple access interference (MAI) and intersymbol interference (ISI), as well as assuming identically distributed chips from a single interferer, the bit error rate (BER) performance of the PIC scheme at any stage can be recursively computed from the signal-to-noise ratio, number of users, the number of path per user, processing gain of the CDMA system, and the average received power of each path. For completeness, the BER expression is derived for chip synchronous and chip asynchronous systems over both equal and unequal power multipath channels. The proposed analysis is validated by the Monte Carlo simulations and proved to be reasonably accurate, and it gives insight into the performance and capacity one can expect from PIC-based receivers under different situations. For instance, the analytical results can be used to examine the convergence property, multipath diversity gains, and near-far resistance of the PIC scheme.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:54 ,  Issue: 4 )

Date of Publication:

July 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.