By Topic

Dynamic Force Distribution in Multifingered Grasping by Decomposition and Positive Combination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Zheng ; Robotics Inst., Shanghai Jiao Tong Univ., China ; Wen-Han Qian

This paper presents a general algorithm for computing the optimal dynamic force distribution in multifingered grasping. It consists of two phases. In the offline phase, we select a spanning set for the required dynamic resultant wrench and find a corresponding spanning set for the total contact force. Then, in the online phase, the total contact force is obtained by decomposition of the resultant wrench into the former spanning set and a coefficient vector followed by positive combination of the latter spanning set with the vector. To make the online computation as simple as possible, iterative operation is executed offline and only arithmetic operation is employed online. To improve the grasping quality, the two spanning sets are selected elaborately.

Published in:

IEEE Transactions on Robotics  (Volume:21 ,  Issue: 4 )