By Topic

Microrobotic Visual Control of Motile Cells Using High-Speed Tracking System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ogawa, N. ; Univ. of Tokyo, Japan ; Oku, H. ; Hashimoto, K. ; Ishikawa, M.

We propose a visual control system for motile cells. Our goal is to control microorganisms as microscale smart robots for various applications. As a first step, we have developed a visual feedback control system for Paramecium caudatum cells. In order to ensure both detailed measurements and a large working space, “lock-on” tracking of a free-swimming cell with a high frame rate is essential. In our system, high-speed (1-kHz frame rate) tracking hardware and software are used for the continuous observation of moving cells with high magnification. Cells swim in a chamber, and their positions and other properties are measured and computed in real time. The chamber position is visually controlled automatically to track a specific cell. The cell motion is controlled electrically by utilizing the galvanotaxis (intrinsic reaction to electrical stimulus) of microorganisms. Experimental results for open-loop control (periodic zigzag motion) and closed-loop control (trapping within a small region that is 1 mm wide) demonstrate the possibility of using microorganisms as micromachines.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 4 )