Cart (Loading....) | Create Account
Close category search window
 

Kinematic Calibration of Parallel Mechanisms: A Novel Approach Using Legs Observation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Renaud, Pierre ; Lab. de Recherches et Applic. en Mecanique Avancee, Univ. Blaise Pascal, Aubiere, France ; Andreff, N. ; Martinet, P. ; Gogu, G.

In this paper, a novel approach is proposed for the kinematic calibration of parallel mechanisms with linear actuators at the base. The originality of the approach lies in the observation of the mechanism legs with a camera, without any mechanism modification. The calibration can hence be achieved online, as no calibration device is linked to the end-effector, on any mechanism since no additional proprioceptive sensor installation is necessary. Because of the conditions of leg observability, several camera locations may be needed during the experimentation. The associated calibration method does not however require any accurate knowledge of the successive camera positions. The experimental procedure is therefore easy to perform. The method is developed theoretically in the context of mechanisms with legs linearly actuated at the base, giving the necessary conditions of identifiability. Application to an I4 mechanism is achieved with experimental results.

Published in:

Robotics, IEEE Transactions on  (Volume:21 ,  Issue: 4 )

Date of Publication:

Aug. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.