Cart (Loading....) | Create Account
Close category search window

Modeling and Optimal Control of Batch Processes Using Recurrent Neuro-Fuzzy Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jie Zhang ; Centre for Process Anal. & Control Technol., Univ. of Newcastle, Newcastle upon Tyne, UK

A recurrent neuro-fuzzy network based strategy for batch process modeling and optimal control is presented in this paper. The recurrent neuro-fuzzy network allows the construction of a “global” nonlinear long-range prediction model from the fuzzy conjunction of a number of “local” linear dynamic models. In this recurrent neuro-fuzzy network, the network output is fed back to the network input through one or more time delay units. This particular structure ensures that predictions from a recurrent neuro-fuzzy network are long-range or multi-step-ahead predictions. Long-range predictions are particularly important for batch processes where the interest lies in the product quality and quantity at the end of a batch. To enhance batch process control and monitoring, a model capable of predicting accurately the product quality/quantity at the end of a batch is required. Process knowledge is used to initially partition the process nonlinear characteristics into several local operating regions and to aid in the initialization of the corresponding network weights. Process input output data is then used to train the network. Membership functions of the local regimes are identified and local models are discovered through network training. An advantage of this recurrent neuro-fuzzy network model is that it is easy to interpret. This helps process operators in understanding the process characteristics. The proposed technique is applied to the modeling and optimal control of a fed-batch reactor.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )

Date of Publication:

Aug. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.