By Topic

Nonlinear System Identification Using Coevolution of Models and Tests

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bongard, J.C. ; Sibley Sch. of Mech. & Aerosp. Eng., Cornell Univ., Ithaca, NY, USA ; Lipson, H.

We present a coevolutionary algorithm for inferring the topology and parameters of a wide range of hidden nonlinear systems with a minimum of experimentation on the target system. The algorithm synthesizes an explicit model directly from the observed data produced by intelligently generated tests. The algorithm is composed of two coevolving populations. One population evolves candidate models that estimate the structure of the hidden system. The second population evolves informative tests that either extract new information from the hidden system or elicit desirable behavior from it. The fitness of candidate models is their ability to explain behavior of the target system observed in response to all tests carried out so far; the fitness of candidate tests is their ability to make the models disagree in their predictions. We demonstrate the generality of this estimation-exploration algorithm by applying it to four different problems—grammar induction, gene network inference, evolutionary robotics, and robot damage recovery—and discuss how it overcomes several of the pathologies commonly found in other coevolutionary algorithms. We show that the algorithm is able to successfully infer and/or manipulate highly nonlinear hidden systems using very few tests, and that the benefit of this approach increases as the hidden systems possess more degrees of freedom, or become more biased or unobservable. The algorithm provides a systematic method for posing synthesis or analysis tasks to a coevolutionary system.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:9 ,  Issue: 4 )