By Topic

A probabilistic model for predicting software development effort

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pendharkar, P.C. ; Sch. of Bus. Adm., Pennsylvania State Univ., University Park, PA, USA ; Subramanian, G.H. ; Rodger, J.A.

Recently, Bayesian probabilistic models have been used for predicting software development effort. One of the reasons for the interest in the use of Bayesian probabilistic models, when compared to traditional point forecast estimation models, is that Bayesian models provide tools for risk estimation and allow decision-makers to combine historical data with subjective expert estimates. In this paper, we use a Bayesian network model and illustrate how a belief updating procedure can be used to incorporate decision-making risks. We develop a causal model from the literature and, using a data set of 33 real-world software projects, we illustrate how decision-making risks can be incorporated in the Bayesian networks. We compare the predictive performance of the Bayesian model with popular nonparametric neural-network and regression tree forecasting models and show that the Bayesian model is a competitive model for forecasting software development effort.

Published in:

Software Engineering, IEEE Transactions on  (Volume:31 ,  Issue: 7 )