By Topic

Mobile robot geolocation with received signal strength (RSS) fingerprinting technique and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
C. Nerguizian ; Ecole Polytech., Montreal, Que., Canada ; S. Belkhous ; A. Azzouz ; V. Nerguizian
more authors

The location of a mobile robot is highly desirable for operational enhancements in indoor environments. In an in-building environment, the multipath caused by reflection and diffraction, and the obstruction and/or the blockage of the shortest path between transmitter and receiver are the main sources of range measurement errors. Due to the harsh indoor environment, unreliable measurements of location metrics such as received signal strength (RSS), angle of arrival (AOA) and time or time difference of arrival TOA/TDOA result in the deterioration of the positioning performance. Hence, alternatives to the traditional parametric geolocation techniques have to be considered. In this paper, we present a method for mobile robot location using WLAN's received power (RSS) data applied to an artificial neural network (ANN). The proposed system learns off-line the location RSS 'signatures' for line of sight (LOS) and non-line of sight (NLOS) situations. It then matches on-line the observation received from a mobile robot against the learned set of 'signatures' to accurately locate its position. The location precision of the proposed system, applied in an in-building environment, has been found to be 0.5 meter for 90% of trained data and about 5 meters for 58% of untrained data.

Published in:

Industrial Technology, 2004. IEEE ICIT '04. 2004 IEEE International Conference on  (Volume:3 )

Date of Conference:

8-10 Dec. 2004