Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Complexity scalable motion compensated wavelet video encoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Turaga, D.S. ; Wireless Commun. & Networking, Philips Res. USA, Briarcliff Manor, NY, USA ; van der Schaar, M. ; Pesquet-Popescu, B.

We present a framework for the systematic analysis of video encoding complexity, measured in terms of the number of motion estimation (ME) computations, that we illustrate on motion compensated wavelet video coding schemes. We demonstrate the graceful complexity scalability of these schemes through the modification of the spatiotemporal decomposition structure and the ME parameters, and the use of spatiotemporal prediction. We generate a wide range of rate-distortion-complexity (R-D-C) operating points for different sequences, by modifying these options. Using our analytical framework we derive closed form expressions for the number of ME computations for these different coding modes and show that they accurately capture the computational complexity independent of the underlying content characteristics. Our framework for complexity analysis can be combined with rate-distortion modeling to determine the encoding structure and parameters for optimal R-D-C tradeoffs.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:15 ,  Issue: 8 )