By Topic

Low-pass filtering of rate-distortion functions for quality smoothing in real-time video communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhihai He ; Dept. of Electr. & Comput. Eng., Univ. of Missouri, Columbia, MO, USA ; Zeng, Wenjun ; Chang Wen Chen

In variable-bit-rate video coding, the video is preprocessed to collect sequence-level statistics, which are used for global bit allocation in the actual encoding stage to obtain a smoothed video presentation quality. However, in real-time video recording and network streaming, this type of two-pass encoding scheme is not allowed because the access to future frames and global statistics is not available. To address this issue, we introduce the concept of low-pass filtering of rate-distortion functions and develop a smoothed rate control (SRC) framework for real-time video recording and streaming. Theoretically, we prove that, using a geometric averaging filter, the SRC algorithm is able to maintain a smoothed video presentation quality while achieving the target bit rate automatically. We also analyze the buffer requirement of the SRC algorithm in real-time video streaming, and propose a scheme to seamlessly integrate robust buffer control into the SRC framework. The proposed SRC algorithm has very low computational complexity and implementation cost. Our extensive experimental results demonstrate that the SRC algorithm significantly reduces the picture quality variation in the encoded video clips.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:15 ,  Issue: 8 )