Cart (Loading....) | Create Account
Close category search window
 

Linear-time wrappers to identify atypical points: two subset generation methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hashemi, S. ; Fac. of Comput. Sci., Dalhousie Univ., Halifax, NS, Canada

The wrapper approach to identify atypical examples can be preferable to the filter approach (which may not be consistent with the classifier in use), but its running time is prohibitive. The fastest available wrappers are quadratic in the number of examples, which is far too expensive for atypical detection. The algorithm presented in this paper is a linear-time wrapper that is roughly 75 times faster than the quadratic wrappers on average over 7 classifiers and 20 data sets tested in this research. Also, two subset generation, methods for the wrapper are introduced and compared. Atypical points are defined in this paper as the misclassified points that the proposed algorithm (Atypical Sequential Removing: ASR) finds not useful to the classification task. They may include outliers as well as overlapping samples. ASR can identify and rank atypical points in the whole data set without damaging the prediction accuracy. It is general enough that classifiers without reject option can use it. Experiments on benchmark data sets and different classifiers show promising results and confirm that this wrapper method has some advantages and can be used for atypical detection.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 9 )

Date of Publication:

Sept. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.