By Topic

A discretization algorithm based on a heterogeneity criterion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaoyan Liu ; Dept. of Inf. Syst., City Univ. of Hong Kong, Kowloon, China ; Huaiqing Wang

Discretization, as a preprocessing step for data mining, is a process of converting the continuous attributes of a data set into discrete ones so that they can be treated as the nominal features by machine learning algorithms. Those various discretization methods, that use entropy-based criteria, form a large class of algorithm. However, as a measure of class homogeneity, entropy cannot always accurately reflect the degree of class homogeneity of an interval. Therefore, in this paper, we propose a new measure of class heterogeneity of intervals from the viewpoint of class probability itself. Based on the definition of heterogeneity, we present a new criterion to evaluate a discretization scheme and analyze its property theoretically. Also, a heuristic method is proposed to find the approximate optimal discretization scheme. Finally, our method is compared, in terms of predictive error rate and tree size, with Ent-MDLC, a representative entropy-based discretization method well-known for its good performance. Our method is shown to produce better results than those of Ent-MDLC, although the improvement is not significant. It can be a good alternative to entropy-based discretization methods.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 9 )