By Topic

Solving timetabling problems using genetic algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
M. Karova ; Dept. of Comput. Sci., Studentska I Tech. Univ. Vania, Varna, Bulgaria

The paper describes techniques that can be applied to a different scheduling and timetabling problems. The problems are characterized as constraints satisfaction problems. The solution methodology uses genetic algorithms to minimize the total penalty for constraint violation. Encoding, genetic operators and fitness evaluation are implemented. To solve this problem, a genetic algorithm maintains a population of chromosomes, each of which represents a possible solution (timetable). In every generation, a new population of chromosomes is created using bits and pieces of the fittest of the old generation. The main tasks of applying a genetic algorithm to solve a problem are: encoding the solution as chromosomes; developing a fitness evaluation function; choosing genetic operators and run parameters. The genetic algorithm includes the following functions: initialize, evaluate, select, crossover, mutate, create new population. Our genetic algorithm proposes a solution which consists of a number of tuples, one for each class. The timetabling constraints are classified: unary constraints, binary constraints; k-nary constraints. The fitness function is a linear combination of a cost function and a penalty function. The goal is that all constraints be satisfied. We use a constraint propagation approach. There are experimental results.

Published in:

Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2004. 27th International Spring Seminar on  (Volume:1 )

Date of Conference:

13-16 May 2004