By Topic

Design tradeoffs for BLAS operations on reconfigurable hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ling Zhuo ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Prasanna, V.K.

Numerical linear algebra operations are key primitives in scientific computing. Performance optimizations of such operations have been extensively investigated and some basic operations have been implemented as software libraries. With the rapid advances in technology, hardware acceleration of linear algebra applications using FPGAs (field programmable gate arrays) has become feasible. In this paper, we propose FPGA-based designs for several BLAS operations, including vector product, matrix-vector multiply, and matrix multiply. By identifying the design parameters for each BLAS operation, we analyze the design tradeoffs. In the implementations of the designs, the values of the design parameters are determined according to the hardware constraints, such as the available area, the size of on-chip memory, the external memory bandwidth and the number of I/O pins. The proposed designs are implemented on a Xilinx Virtex-II Pro FPGA.

Published in:

Parallel Processing, 2005. ICPP 2005. International Conference on

Date of Conference:

14-17 June 2005