By Topic

Performance test of amorphous silicon modules in different climates - year three: higher minimum operating temperatures lead to higher performance levels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
R. Ruther ; Departamento de Engenharia Civil, Univ. Fed. de Santa Catarina, Florianopolis, Brazil ; G. Tamizh-Mani ; J. del Cueto ; J. Adelstein
more authors

This paper presents third year results of a round robin exposure experiment designed to assess the performance of thin-film amorphous silicon (a-Si) solar modules operating in different climatic conditions. Three identical sets of commercially available a-Si PV modules from five different manufacturers were simultaneously deployed outdoors in three sites with distinct climates (Arizona -USA, Colorado - USA and Florianopolis - Brazil). Every year all PV module sets were sent to the National Renewable Energy Laboratory (NREL) for standard testing conditions measurements under a SPIRE simulator. The four-year experiment aims to determine the light-induced degradation and stabilization characteristics of a-Si regarding specific history of exposure, and to monitor and compare degradation rates in different climates. We present results from the first three years of measurements, showing that while most of the manufacturers underrate their products by 20 to 25% to account for the light-induced degradation, outdoor exposure temperature seems to be what will ultimately determine the stabilized performance level of a-Si.

Published in:

Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005.

Date of Conference:

3-7 Jan. 2005