By Topic

On the empirical optimization of antenna arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. J. Blank ; New York Inst. of Technol., NY, USA ; M. F. Hutt

Empirical optimization is an algorithm for the optimization of antenna array performance under realistic conditions, accounting for the effects of mutual coupling and scattering between the elements of the array and the nearby environment. The algorithm can synthesize optimum element spacings and optimum element excitations. It is applicable to arrays of various element types having arbitrary configurations, including phased arrays, conformal arrays and nonuniformly spaced arrays. The method is based on measured or calculated element-pattern data, and proceeds in an iterative fashion to the optimum design. A novel method is presented in which the admittance matrix representing an antenna array, consisting of both active and passive elements, is extracted from the array's element-pattern data. The admittance-matrix formulation incorporated into the empirical optimization algorithm enables optimization of the location of both passive and active elements. The methods also provide data for a linear approximation of coupling as a function of (nonuniform) element locations, and for calculation of element scan impedances. Computational and experimental results are presented that demonstrate the rapid convergence and effectiveness of empirical optimization in achieving realistic antenna array performance optimization.

Published in:

IEEE Antennas and Propagation Magazine  (Volume:47 ,  Issue: 2 )