By Topic

The geometric transfer function for a slat collimator mounted on a strip detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
S. Staelens ; ELIS Dept., Ghent Univ., Belgium ; M. Koole ; S. Vandenberghe ; Y. D'Asseler
more authors

A theoretical formulation of the effective point spread function of a slat collimator on a strip detector has been derived. The used technique to obtain the geometric transfer function, which is the Fourier transform of the effective point source image, is based on the geometric characteristics of a single gap and it accurately describes the performance of the collimation system for system analysis. Valuable conclusions resulting from this geometric transfer function could be made on the sensitivity, on the spatial resolution, and on the line spread function of the imaging system. We found that the sensitivity was dependent on the angle of incidence and on the distance to the detector. The spatial resolution was constant in a plane at a fixed distance to the detector and closed analytical expressions were derived for transaxial line spread profiles. These results were confirmed by the appropriate Monte Carlo simulations. The presented formulation of the geometric transfer function will be useful with usage in iterative reconstruction algorithms to incorporate distance dependent effects.

Published in:

IEEE Transactions on Nuclear Science  (Volume:52 ,  Issue: 3 )