By Topic

Implementation of an analytically based scatter correction in SPECT reconstructions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
E. Vandervoort ; Dept. of Phys. & Astron., Univ. of British Columbia, Vancouver, BC, Canada ; A. Celler ; G. Wells ; S. Blinder
more authors

Photon scattering is one of the main effects contributing to the degradation of image quality and to quantitative inaccuracy in nuclear imaging. We have developed a scatter correction based on a simplified version of the analytic photon distribution (APD) method, and have implemented it in an iterative image reconstruction algorithm. The scatter distributions generated using this approach were compared to those obtained using the original APD method. Reconstructions were performed using computer simulations, phantom experiments, and patient data. Images corrected for scatter, attenuation, and collimator blurring were compared to images corrected only for attenuation and collimator blurring. In the simulation studies, results were compared to an ideal situation in which only the primary (unscattered) photon data were reconstructed. Results showed that in all cases, the scatter-corrected images demonstrated substantially improved image contrast relative to no scatter correction. For simulated data, scatter-corrected images had very similar contrast and noise properties to the primary-only reconstructions. Additional work is required to further reduce the computation times to clinically viable amounts.

Published in:

IEEE Transactions on Nuclear Science  (Volume:52 ,  Issue: 3 )