By Topic

Security of public-key cryptosystems based on Chebyshev polynomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bergamo, P. ; Dipt. di Informatica ed Applicazioni, Univ. degli Studi di Salerno, Baronissi, Italy ; D'Arco, P. ; De Santis, A. ; Kocarev, L.

Chebyshev polynomials have been recently proposed for designing public-key systems. Indeed, they enjoy some nice chaotic properties, which seem to be suitable for use in Cryptography. Moreover, they satisfy a semi-group property, which makes possible implementing a trapdoor mechanism. In this paper, we study a public-key cryptosystem based on such polynomials, which provides both encryption and digital signature. The cryptosystem works on real numbers and is quite efficient. Unfortunately, from our analysis, it comes up that it is not secure. We describe an attack which permits to recover the corresponding plaintext from a given ciphertext. The same attack can be applied to produce forgeries if the cryptosystem is used for signing messages. Then, we point out that also other primitives, a Diffie-Hellman like key agreement scheme and an authentication scheme, designed along the same lines of the cryptosystem, are not secure due to the aforementioned attack. We close the paper by discussing the issues and the possibilities of constructing public-key cryptosystems on real numbers.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 7 )