By Topic

Self-timed dynamically pipelined adaptive signal processing system: a case study of DLMS equalizer for read channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sizhong Chen ; Dept. of Electr., Rensselaer Polytech. Inst., Troy, NY, USA ; Tong Zhang

Many pipelined adaptive signal processing systems are subject to a tradeoff between throughput and signal processing performance incurred by the pipelined adaptation feedback loops. In the conventional synchronous design regime, such throughput/performance tradeoff is typically fixed since the pipeline depth is usually determined in the design phase and remains unchanged in the run time. Nevertheless, in many real-life scenarios, the overall system performance can be potentially improved if we can run-time dynamically configure this tradeoff. With this motivation, we propose to apply self-timed pipeline, an alternative to synchronous pipeline, to implement the pipelined adaptive signal processing systems, in which the pipeline depth can be dynamically changed to realize run-time configurable throughput/performance tradeoffs. Based on a well-known high speed self-timed pipeline style, we developed architecture and circuit level design techniques to implement the self-timed pipelined adaptation feedback loop with configurable pipeline depth. We demonstrate the proposed design approach using a delayed least mean square (DLMS) adaptive equalizer for magnetic recording read channel. The data transfer rate in hard disk varies as the read head moves among tracks with different distance from the center of the disk platter. By adjusting the pipeline depth on-the-fly, the DLMS equalizer can dynamically track the best equalization performance allowed by the varying data transfer rates. Simulation result shows a significant performance improvement compared with its synchronous counterpart.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:52 ,  Issue: 7 )