By Topic

Initialization of Markov random field clustering of large remote sensing images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tran, T.N. ; Inst. for Molecules & Mater., Radboud Univ. Nijmegen, Netherlands ; Wehrens, R. ; Hoekman, D.H. ; Buydens, L.M.C.

Markov random field (MRF) clustering, utilizing both spectral and spatial interpixel dependency information, often improves classification accuracy for remote sensing images, such as multichannel polarimetric synthetic aperture radar (SAR) images. However, it is heavily sensitive to initial conditions such as the choice of the number of clusters and their parameters. In this paper, an initialization scheme for MRF clustering approaches is suggested for remote sensing images. The proposed method derives suitable initial cluster parameters from a set of homogeneous regions, and estimates the number of clusters using the pseudolikelihood information criterion (PLIC). The method works best for an image consisting of many large homogeneous regions, such as agricultural crops areas. It is illustrated using a well-known polarimetric SAR image of Flevoland in the Netherlands. The experiment shows a superior performance compared to several other methods, such as fuzzy C-means and iterated conditional modes (ICM) clustering.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:43 ,  Issue: 8 )