By Topic

Validation of the Shuttle Radar Topography Mission height data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. G. Brown ; Lawrence Livermore Nat. Lab., CA, USA ; K. Sarabandi ; L. E. Pierce

The Shuttle Radar Topography Mission (SRTM) provided data for detailed topographical maps of about 80% of the Earth's land surface. SRTM consisted of single-pass C- and X-band interferometric synthetic aperture radars (INSARs). In order to utilize SRTM data in remote sensing applications the data must be calibrated and validated. This paper presents The University of Michigan's SRTM calibration and validation campaign and our results using recently acquired C-band SRTM data of our calibration sites. An array of calibration targets was deployed with the intention of determining the accuracy of INSAR-derived digital elevation maps. The array spanned one of the X-band swaths and stretched from Toledo, OH to Lansing, MI. Passive and active targets were used. The passive targets included trihedrals and tophats. The locations in latitude, longitude, and elevation of the point targets were determined using differential GPS. We also acquired U.S. Geological Survey (USGS) digital elevation models (DEMs) to use in the calibration and validation work. The SRTM data used in this study are both Principal Investigator Processor (PI) data, which are not the refined final data product, and the ground data processing system (GDPS) data, which are a more refined data product. We report that both datasets for southeastern Michigan exceed the SRTM mission specifications for absolute and relative height errors for our point targets. A more extensive analysis of the SRTM GDPS data indicates that it meets the absolute and relative accuracy requirements even for bare surface areas. In addition, we validate the PI height error files, which are used to provide a statistical characterization of the difference between the SRTM GDPS and USGS DEM heights. The statistical characterization of the GDPS-USGS difference is of interest in forest parameter retrieval algorithms.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:43 ,  Issue: 8 )