By Topic

Support vector machines for quality monitoring in a plastic injection molding process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ribeiro, B. ; Dept. of Informatics Eng., Univ. of Coimbra, Portugal

Support vector machines (SVMs) are receiving increased attention in different application domains for which neural networks (NNs) have had a prominent role. However, in quality monitoring little attention has been given to this more recent development encompassing a technique with foundations in statistic learning theory. In this paper, we compare C-SVM and ν-SVM classifiers with radial basis function (RBF) NNs in data sets corresponding to product faults in an industrial environment concerning a plastics injection molding machine. The goal is to monitor in-process data as a means of indicating product quality and to be able to respond quickly to unexpected process disturbances. Our approach based on SVMs exploits the first part of this goal. Model selection which amounts to search in hyperparameter space is performed for study of suitable condition monitoring. In the multiclass problem formulation presented, classification accuracy is reported for both strategies. Experimental results obtained thus far indicate improved generalization with the large margin classifier as well as better performance enhancing the strength and efficacy of the chosen model for the practical case study.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 3 )