By Topic

An adaptive multimodal biometric management algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Veeramachaneni, K. ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., NY, USA ; Osadciw, L.A. ; Varshney, P.K.

This paper presents an evolutionary approach to the sensor management of a biometric security system that improves robustness. Multiple biometrics are fused at the decision level to support a system that can meet more challenging and varying accuracy requirements as well as address user needs such as ease of use and universality better than a single biometric system or static multimodal biometric system. The decision fusion rules are adapted to meet the varying system needs by particle swarm optimization, which is an evolutionary algorithm. This paper focuses on the details of this new sensor management algorithm and demonstrates its effectiveness. The evolutionary nature of adaptive, multimodal biometric management (AMBM) allows it to react in pseudoreal time to changing security needs as well as user needs. Error weights are modified to reflect the security and user needs of the system. The AMBM algorithm selects the fusion rule and sensor operating points to optimize system performance in terms of accuracy.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:35 ,  Issue: 3 )