By Topic

On the use of different speech representations for speaker modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ke Chen ; Sch. of Informatics, Univ. of Manchester, UK

Numerous speech representations have been reported to be useful in speaker recognition. However, there is much less agreement on which speech representation provides a perfect representation of speaker-specific information conveyed in a speech signal. Unlike previous work, we propose an alternative approach to speaker modeling by the simultaneous use of different speech representations in an optimal way. Inspired by our previous empirical studies, we present a soft competition scheme on different speech representations to exploit different speech representations in encoding speaker-specific information. On the basis of this soft competition scheme, we present a parametric statistical model, generalized Gaussian mixture model (GGMM), to characterize a speaker identity based on different speech representations. Moreover, we develop an expectation-maximization algorithm for parameter estimation in the GGMM. The proposed speaker modeling approach has been applied to text-independent speaker recognition and comparative results on the KING speech corpus demonstrate its effectiveness.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:35 ,  Issue: 3 )