Cart (Loading....) | Create Account
Close category search window

Ion-implantation and activation behavior of Si in MBE-Grown GaAs on Si substrates for GaAs MESFET's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chand, N. ; AT&T Bell Laboratories, Murray Hill, NJ ; Ren, F. ; Pearton, S.J. ; Shah, N.J.
more authors

The suitability of MBE-grown GaAs layers on Si substrates has been studied for ion-implanted GaAs MESFET technology. The undoped as-grown GaAs layers had a carrier concentration below 1014cm-3. Uniform Si ion implants into 4-µm-thick GaAs layers on Si were annealed at 900°C for 10 s, using a rapid-thermal-annealing (RTA) system. Both the activation and the doping profile were similar to those obtained in bulk semi-insulating GaAs under similar conditions. The SIMS profiles of Si and As atoms near the GaAs/Si heterointerface were identical before and after the RTA process, indicating negigible interdiffusion during the implant activation. Dual implants of a shallow n+ layer and an n-channel layer were used to fabricate GaAs MESFET's with a recess-gate technology. Selective oxygen ion implantation was used for device isolation. The maximum transconductance obtained was 135 mS/ mm compared to typical values of 150-180 mS/mm obtained in our laboratory on GaAs substrates in similar device structures.

Published in:

Electron Device Letters, IEEE  (Volume:8 ,  Issue: 5 )

Date of Publication:

May 1987

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.