By Topic

Substrate current at cryogenic temperatures: Measurements and a two-dimensional model for CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Henning, Albert K. ; Stanford University, Stanford, CA ; Chan, N.N. ; Watt, J.T. ; Plummer, James D.

This work characterizes the temperature, channel length, and voltage dependences of substrate current, and presents a local model describing this behavior using Shockley's lucky electron (LE) model as a basis. For n-channel (p-channel) devices, the model is extended using a Maxwell-Boltzmann (MB) distribution of hot-electron (hole) energies above (below) the conduction (valence) band minimum (maximum). The model has been implemented in CADDET, a 2-D device simulator, and is able to explain all of the important features of substrate current which have been reported to date. The model is discussed in the context of works which look at both the local and physical nature of the impact ionization phenomenon. Based on this discussion, the model's parameters are shown to have a solid physical basis, requiring no reliance on curve fitting. The agreement between data and simulations thus enhances physical understanding of substrate current in MOSFET's, and warrants confident design of CMOS technologies for cryogenic operation.

Published in:

Electron Devices, IEEE Transactions on  (Volume:34 ,  Issue: 1 )