By Topic

A two-dimensional analytical threshold voltage model for MOSFET's with arbitrarily doped substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kendall, J.D. ; Northern Telecom Electrons Ltd., Ottawa, Ont., Canada ; Boothroyd, A.R.

A threshold voltage model is presented which is valid for short- and long-channel MOSFET's with a nonuniform substrate doping profile. The model is based upon an approximate two-dimensional analytical solution of Poisson's equation for a MOSFET of arbitrary substrate doping profile which takes into account the effect of curved junctions of finite depth. The analytical model is compared to MINIMOS simulations showing that it can accurately predict short-channel threshold voltage falloff and threshold voltages in this vicinity without the use of fitting parameters.

Published in:

Electron Device Letters, IEEE  (Volume:7 ,  Issue: 7 )